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The aim of the present work is to study multi-scale finite element methods of eddy currents in laminated media in two and three
dimensions with a current vector potential. Material properties are assumed to be linear. Hence, approaches are developed for the
frequency domain. The weak formulations are derived. Some numerical simulations are presented.
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I. Introduction

AN accurate prediction of the eddy current losses in
laminated iron cores of electric devices is a challenging

task in the design process. Modeling of each laminate requires
many finite elements leading to extremely large equation
systems. The computational costs to solve these systems are
prohibitively high.

The solution obtained by prescribing a current vector poten-
tial (CVP) having a single component normal to the lamination
[1] or using anisotropic electric conductivity [2] has to be
corrected in a post-processing step to consider the effect of
the main magnetic flux on the total eddy current losses. These
approaches are questionable in the context of nonlinear mate-
rial properties. Multi-scale finite element methods (MSFEMs)
provide the solution in one step taking account of both the
main magnetic flux parallel to the lamination and a magnetic
stray flux perpendicular to the lamination.

To improve the local approximation the magnetic flux
density parallel to the lamination is expanded into orthogonal
even polynomials, so-called skin effect sub-basis functions, in
[3].

MSFEMs developed in the past utilized a magnetic vector
potential A, ([4], [5]). In the present work MSFEMs have
been developed based on a CVP T describing eddy currents
in laminated media in two and three dimensions. A multi-scale
order up to order two has been considered.

The developed MSFEM approaches and the weak formula-
tions are presented. Eddy current losses obtained by the new
MSFEM have been compared with those obtained by reference
solutions of finite element models considering each laminate
individually. Numerical simulations are shown.

II. Boundary Value Problem with T
The eddy current problem to be solved is sketched in Fig.

1. It consists of a laminated material Ωm enclosed by air Ω0,
i.e., Ω = Ωm ∪ Ω0 with boundary Γ. The material parameters
are the magnetic permeability µ and the electric resistivity ρ.

The CVP T is introduced by

curl T = J, (1)
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Fig. 1. Eddy current problem model (sketch).

where J stands for the current density [6]. Considering
Maxwell’s equations for an eddy current problem leads to the
boundary value problem

curl ρ curl T + jωµT = J0 in Ω ⊂ R3 (2)
ρ curl T × n = 0 (3)

n× T = K (4)

in the frequency domain with the imaginary unit j, the angular
frequency ω, the impressed current density J0 and the surface
current density K, respectively.

III. Multi-scaleModeling andWeak formulations

Approaches (6) and (8) are based on the fact that the
problem can be observed as a macro-structure with the large
dimensions of the iron bulk, on the one hand, and on the
other, the micro-structure with the very small thickness of
the laminates d and the width of the air gaps d0 in between
(Fig. 1). The mean values u0 and T0 consider the large scale
variations of the macro-structure and the scalar quantities u2
and T22 and T23 and the periodic micro-shape functions φ2, see
Fig. 2, and the derivative φ2x, respectively, the rough variations
of the micro-structure.

The magnetic field strength of the main magnetic field is an
even function across the laminates. Therefore, only even terms
are considered in the MS approaches (6, 8). The extension to
higher order approaches is obviously [5].

Since the solutions of u0,T0,T22 and wT22 are smooth
standard finite element basis functions [7] have been used.



A. Single Component Current Vector Potential T

The main magnetic flux is parallel to the lamination and
perpendicular to the plane of projection [4]. There are basically
two possibilities, a single component CVP and a CVP with two
components for two-dimensional problems. The later one is of
minor practical relevance, thus, not studied here. The single
component CVP yields the scalar partial differential equation

− div ρ grad T + jωµT = f (5)

The higher order multi-scale approach

T̃ (x, y) = T0(x, y) + φ2(x)T2(x, y), (6)

see Fig. 2, has been chosen for the complex-valued T , leading
to the weak formulation for the finite element method:
Find (T0h,T2h) ∈ Vh,D := {(T0h,T2h) : T0h ∈ Uh,T2h ∈

Vh and T0h = uD on Γ}, such that∫
Ω

ρ∇T̃h · ∇ṽh dΩ + jω
∫

Ω

µT̃hṽh dΩ =

∫
Ω

f ṽh dΩ (7)

for all (v0h, v2h) ∈ Vh,0, where Uh is a finite element subspace
of H1(Ω), Vh of L2(Ωm) and φ2 ∈ H1

per(Ωm).
Index h indicates finite element discretization.

B. Current Vector Potential T

The two three-dimensional higher order multi-scale ap-
proaches

T̃ = T0 + φ2

 0
T22
T23

 +

0, w2

φ2x

0
0


 (8)

have been studied. The weak formulation is:
Find
(T0h,T22h,T23h,w2h) ∈ Vh,K := {(T0h,T22h,T23h,w2h) :
T0h ∈ Uh , T22h and T23h ∈ Vh , w2h ∈ Wh and
T0h × n = K on Γ}, such that∫

Ω

ρ curl T̃h ·curl ṽh dΩ+ jω
∫

Ω

µT̃h ·ṽh dΩ =

∫
Ω

J0 ·ṽh dΩ (9)

for all (v0h, v22h, v23h, q2h) ∈ Vh,0, where Uh is a finite element
subspace of H(curl,Ω), Vh of L2(Ωm) and Wh of H1(Ωm),
respectively.

Fig. 2. Micro-shape function φ2.

IV. Numerical Simulations
The iron stack consists of 10 or 100 laminates, see Fig. 1. A

thickness of both, iron layer and air gap, of d + d0 = 0.25mm,
an unfavorable fill factor of c f = 0.9, a conductivity of
σ = 2 · 106S/m and a relative permeability of µr = 50, 000
were selected. Dirichlet boundary conditions were prescribed
on Γ to excite the problem. The reference solution obtained by
finite element models considering each laminate individually
is denoted by RS.

A. 2D problem:
The problem consists of 100 laminates. The geometry of

the problem can be found in [5].
Table 1: Eddy Current Losses in mW/m.

f in Hz RS SCVP
50 0.879 0.893

500 18.0 18.5

The results are excellent.

B. 3D problem:
The problem is a laminated cube with an edge length

of 2.5mm and consists of 10 laminates immersed in an
homogeneous field. The abbreviations A1 and A2 stand for
the approaches in (8).

Table 2: Eddy Current Losses in pW.
f in Hz RS A1 A2

50 62.9 55.5 55.7
500 531 493 476

In general, such a small example is a demanding task for
MSFEM. However, contrary to the case with a magnetic vector
potential A presented in [8] the last term in (8) do not account
for the edge effects properly. The losses obtained by MSFEM
are significantly to small.
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